Question 925883


Looking at the expression {{{8c^2+38c+35}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{38}}}, and the last term is {{{35}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{35}}} to get {{{(8)(35)=280}}}.



Now the question is: what two whole numbers multiply to {{{280}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{38}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{280}}} (the previous product).



Factors of {{{280}}}:

1,2,4,5,7,8,10,14,20,28,35,40,56,70,140,280

-1,-2,-4,-5,-7,-8,-10,-14,-20,-28,-35,-40,-56,-70,-140,-280



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{280}}}.

1*280 = 280
2*140 = 280
4*70 = 280
5*56 = 280
7*40 = 280
8*35 = 280
10*28 = 280
14*20 = 280
(-1)*(-280) = 280
(-2)*(-140) = 280
(-4)*(-70) = 280
(-5)*(-56) = 280
(-7)*(-40) = 280
(-8)*(-35) = 280
(-10)*(-28) = 280
(-14)*(-20) = 280


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{38}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>280</font></td><td  align="center"><font color=black>1+280=281</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>140</font></td><td  align="center"><font color=black>2+140=142</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>70</font></td><td  align="center"><font color=black>4+70=74</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>56</font></td><td  align="center"><font color=black>5+56=61</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>7+40=47</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>8+35=43</font></td></tr><tr><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>28</font></td><td  align="center"><font color=red>10+28=38</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>14+20=34</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-280</font></td><td  align="center"><font color=black>-1+(-280)=-281</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-140</font></td><td  align="center"><font color=black>-2+(-140)=-142</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-70</font></td><td  align="center"><font color=black>-4+(-70)=-74</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-56</font></td><td  align="center"><font color=black>-5+(-56)=-61</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-7+(-40)=-47</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>-8+(-35)=-43</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-10+(-28)=-38</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-14+(-20)=-34</font></td></tr></table>



From the table, we can see that the two numbers {{{10}}} and {{{28}}} add to {{{38}}} (the middle coefficient).



So the two numbers {{{10}}} and {{{28}}} both multiply to {{{280}}} <font size=4><b>and</b></font> add to {{{38}}}



Now replace the middle term {{{38c}}} with {{{10c+28c}}}. Remember, {{{10}}} and {{{28}}} add to {{{38}}}. So this shows us that {{{10c+28c=38c}}}.



{{{8c^2+highlight(10c+28c)+35}}} Replace the second term {{{38c}}} with {{{10c+28c}}}.



{{{(8c^2+10c)+(28c+35)}}} Group the terms into two pairs.



{{{2c(4c+5)+(28c+35)}}} Factor out the GCF {{{2c}}} from the first group.



{{{2c(4c+5)+7(4c+5)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2c+7)(4c+5)}}} Combine like terms. Or factor out the common term {{{4c+5}}}



===============================================================



Answer:



So {{{8c^2+38c+35}}} factors to {{{(2c+7)(4c+5)}}}.



In other words, {{{8c^2+38c+35=(2c+7)(4c+5)}}}.



Note: you can check the answer by expanding {{{(2c+7)(4c+5)}}} to get {{{8c^2+38c+35}}} or by graphing the original expression and the answer (the two graphs should be identical).