Question 922673
Solve for x, cot^2 theta + 3/sintheta + 3=0 For interval[0,2π)
{{{cot^2(x)+3/sinx+3=0}}}
{{{cos^2(x)/sin^2(x)+3/sinx+3=0}}}
lcd:sin^2(x)
{{{cos^2(x)+3sinx+3sin^2(x)=0}}}
{{{1-sin^2(x)+3sinx+3sin^2(x)=0}}}
{{{2sin^2(x)+3sinx+1=0}}}
(2sinx+1)(sinx+1)=0
sinx=-1/2
x=7&#960;/6, 11&#960;/6 (In quadrants III and IV where sin<0)
or
sinx=-1
x=3&#960;/2