Question 922876

Let {{{f(x)=x^2+3x}}} and {{{g(x)=4x-1}}}, and find

a. {{{(f*g)(0)=(x^2+3x)(4x-1)=(0^2+3*0)(4*0-1)=0(-1)=0}}}

b. {{{(g*f)(0)=(f*g)(0)}}}...commutation property of multiplication; so,{{{(g*f)(0)=0}}}

c. {{{(f*g)(x)=(x^2+3x)(4x-1)=4x^3-x^2+12x-3x=4x^3-x^2+9x}}}

d. {{{(g*f)(x)=(f*g)(x)}}}...commutation property of multiplication; so,{{{(g*f)(x)=4x^3-x^2+9x}}}