Question 77996
{{{(15x^3-10x^2)/(3x^2-5x+2)}}}


{{{(5x^2(3x-2))/(3x^2-5x+2)}}} Factor out 5x^2 on the numerator

Now factor the denominator:

*[invoke quadratic_factoring 3, -5, 2]

So we get the expression

{{{(5x^2(3x-2))/((3x-2)(x-1))}}}


{{{(5x^2cross((3x-2)))/(cross((3x-2))(x-1))}}} Notice the terms {{{3x-2}}} cancel

which leaves us with this:

{{{(5x^2)/(x-1)}}}

So the expression {{{(15x^3-10x^2)/(3x^2-5x+2)}}} reduces to


{{{(5x^2)/(x-1)}}}


As always, you can graph the two expressions as equations and they will be the same. This means they are equivalent.