Question 920828
{{{(csc(t)+sec(t))/(sin(t)+cos(t)) = csc(t)/cos(t)}}}

start with

{{{(csc(t)+sec(t))/(sin(t)+cos(t)) }}} .....use identity  {{{csc(t)=1/sin(t)}}} and {{{sec(t)=1/cos(t)}}}


 = {{{(1/sin(t)+1/cos(t))/(sin(t)+cos(t))}}}


 = {{{(cos(t)/(sin(t)cos(t))+sin(t)/(sin(t)cos(t)))/(sin(t)+cos(t))}}}


 = {{{((cos(t)+sin(t))/(sin(t)cos(t)))/(sin(t)+cos(t))}}}


 = {{{cross(((cos(t)+sin(t)))/(sin(t)cos(t)))/cross(((sin(t)+cos(t))))}}}


={{{1/(sin(t)cos(t))}}}  go to {{{csc(t)=1/sin(t)}}}=> {{{1/csc(t)=sin(t)}}}


={{{1/((1/csc(t))cos(t))}}}


={{{1/(cos(t)/csc(t))}}}


={{{csc(t)/cos(t)}}}