Question 77945
{{{36x^4y+33y^2-15x^2y^3}}} Start with the given expression


{{{x^2y(36x^2+33xy-15y^2)}}} Factor out the GCF of {{{x^2y}}}


Now we want to factor the quadratic in the parenthesis. If we ignore the y terms we get:


{{{36x^2+33x-15}}} 


Which is a quadratic, so lets factor it:

*[invoke quadratic_factoring 36, 33, -15]

So if we reintroduce the y terms we get

{{{(9x-3y)(4x+5y)}}}

now if we include the {{{x^2y}}} term we get 

{{{x^2y(9x-3y)(4x+5y)}}}


As always, we can multiply and foil {{{x^2y(9x-3y)(4x+5y)}}} to get {{{36x^4y+33y^2-15x^2y^3}}} again