Question 919760
w and L.
w=L+6.


{{{wL=160}}}
{{{(L+6)L=160}}}
{{{L^2+6L=160}}}
{{{highlight_green(L^2+6L-160=0)}}}


Factorization may take time...
{{{Discriminant=6^2-4*1*(-160)=36+4*160=676=26^2}}}


{{{L=(-6+- sqrt(26^2))/(2)}}}
{{{L=(-6+- 26)/2 }}}
Only the PLUS form makes sense.
{{{L=20/2}}}
{{{highlight(L=10)}}}.

From that, {{{highlight(w=16)}}}.



--
The green outlined quadratic is factorable as (L-10)(L+16)=0 and then could be solved this way.