Question 915747
I think you meant to say "x-7" instead of "x+7"


Looking at the expression {{{x^2+x-56}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{1}}}, and the last term is {{{-56}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-56}}} to get {{{(1)(-56)=-56}}}.



Now the question is: what two whole numbers multiply to {{{-56}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-56}}} (the previous product).



Factors of {{{-56}}}:

1,2,4,7,8,14,28,56

-1,-2,-4,-7,-8,-14,-28,-56



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-56}}}.

1*(-56) = -56
2*(-28) = -56
4*(-14) = -56
7*(-8) = -56
(-1)*(56) = -56
(-2)*(28) = -56
(-4)*(14) = -56
(-7)*(8) = -56


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-56</font></td><td  align="center"><font color=black>1+(-56)=-55</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>2+(-28)=-26</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>4+(-14)=-10</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>7+(-8)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>56</font></td><td  align="center"><font color=black>-1+56=55</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-2+28=26</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-4+14=10</font></td></tr><tr><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>8</font></td><td  align="center"><font color=red>-7+8=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-7}}} and {{{8}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-7}}} and {{{8}}} both multiply to {{{-56}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1x}}} with {{{-7x+8x}}}. Remember, {{{-7}}} and {{{8}}} add to {{{1}}}. So this shows us that {{{-7x+8x=1x}}}.



{{{x^2+highlight(-7x+8x)-56}}} Replace the second term {{{1x}}} with {{{-7x+8x}}}.



{{{(x^2-7x)+(8x-56)}}} Group the terms into two pairs.



{{{x(x-7)+(8x-56)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-7)+8(x-7)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+8)(x-7)}}} Combine like terms. Or factor out the common term {{{x-7}}}



===============================================================



Answer:



So {{{x^2+x-56}}} factors to {{{(x+8)(x-7)}}}.



In other words, {{{x^2+x-56=(x+8)(x-7)}}}.



Note: you can check the answer by expanding {{{(x+8)(x-7)}}} to get {{{x^2+x-56}}} or by graphing the original expression and the answer (the two graphs should be identical).



Let me know if you need more help or if you need me to explain a step in more detail.
Feel free to email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>
or you can visit my website here: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a>


Thanks,


Jim