Question 914472
*[Tex \Large\log\left( \sqrt{x^5\sqrt{y^3\sqrt{z^3}}} \right)]



*[Tex \Large\log\left( (x^5(y^3(z^3)^{1/2})^{1/2})^{1/2} \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5(y^3(z^3)^{1/2})^{1/2} \right)]



*[Tex \Large\frac{1}{2}\left(\log\left( x^5\right) + \log\left((y^3(z^3)^{1/2})^{1/2} \right)\right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{2}\log\left((y^3(z^3)^{1/2})^{1/2} \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{2}*\frac{1}{2}\log\left(y^3(z^3)^{1/2} \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{4}\log\left(y^3(z^3)^{1/2} \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{4}\left(\log\left(y^3\right)  + \log\left((z^3)^{1/2} \right)\right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{4}\log\left(y^3\right)  + \frac{1}{4}\log\left((z^3)^{1/2} \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{4}\log\left(y^3\right)  + \frac{1}{4}*\frac{1}{2}\log\left(z^3 \right)]



*[Tex \Large\frac{1}{2}\log\left( x^5\right) + \frac{1}{4}\log\left(y^3\right)  + \frac{1}{8}\log\left(z^3 \right)]



*[Tex \Large5*\frac{1}{2}\log\left( x\right) + 3*\frac{1}{4}\log\left(y\right)  + 3*\frac{1}{8}\log\left(z \right)]



*[Tex \Large\frac{5}{2}\log\left( x\right) + \frac{3}{4}\log\left(y\right)  + \frac{3}{8}\log\left(z \right)]


=================================================================


So, *[Tex \Large\log\left( \sqrt{x^5\sqrt{y^3\sqrt{z^3}}} \right) = \frac{5}{2}\log\left( x\right) + \frac{3}{4}\log\left(y\right)  + \frac{3}{8}\log\left(z \right)] where *[Tex \Large x, \ y, \ z > 0]