Question 913851
1. What is the recursive formula for the sequence -2, 1, 4, 7
2. For the function f(x)=√x-8, find
a. f(11)
b. f(-a)

------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------


1. What is the recursive formula for the sequence -2, 1, 4, 7



We're adding 3 each time (eg: -2 --> 1 is +3 since -2+3 = 1)


So the recursive formula is *[Tex \Large a_{n} = a_{n-1}+3]


This formula essentially states: to get the nth term *[Tex \Large a_{n}], we add 3 to the previous term *[Tex \Large a_{n-1}]


-------------------------------------------------------

2. For the function f(x)=√x-8, find
a. f(11)
b. f(-a)


a)


I'm assuming the function is {{{f(x) = sqrt(x-8)}}}


{{{f(x) = sqrt(x-8)}}}


{{{f(11) = sqrt(11-8)}}}


{{{f(11) = sqrt(3)}}}


-----------------------------------


b)


{{{f(x) = sqrt(x-8)}}}


{{{f(-a) = sqrt(-a-8)}}}



Let me know if you need more help or if you need me to explain a step in more detail.
Feel free to email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>
or you can visit my website here: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a>


Thanks,


Jim