Question 913154


Looking at the expression {{{x^2-22x+120}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-22}}}, and the last term is {{{120}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{120}}} to get {{{(1)(120)=120}}}.



Now the question is: what two whole numbers multiply to {{{120}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-22}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{120}}} (the previous product).



Factors of {{{120}}}:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{120}}}.

1*120 = 120
2*60 = 120
3*40 = 120
4*30 = 120
5*24 = 120
6*20 = 120
8*15 = 120
10*12 = 120
(-1)*(-120) = 120
(-2)*(-60) = 120
(-3)*(-40) = 120
(-4)*(-30) = 120
(-5)*(-24) = 120
(-6)*(-20) = 120
(-8)*(-15) = 120
(-10)*(-12) = 120


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-22}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>1+120=121</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>2+60=62</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>3+40=43</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>4+30=34</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>5+24=29</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>6+20=26</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>8+15=23</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>10+12=22</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>-1+(-120)=-121</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-2+(-60)=-62</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-3+(-40)=-43</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-4+(-30)=-34</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-5+(-24)=-29</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-6+(-20)=-26</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-8+(-15)=-23</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>-10+(-12)=-22</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{-12}}} add to {{{-22}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{-12}}} both multiply to {{{120}}} <font size=4><b>and</b></font> add to {{{-22}}}



Now replace the middle term {{{-22x}}} with {{{-10x-12x}}}. Remember, {{{-10}}} and {{{-12}}} add to {{{-22}}}. So this shows us that {{{-10x-12x=-22x}}}.



{{{x^2+highlight(-10x-12x)+120}}} Replace the second term {{{-22x}}} with {{{-10x-12x}}}.



{{{(x^2-10x)+(-12x+120)}}} Group the terms into two pairs.



{{{x(x-10)+(-12x+120)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-10)-12(x-10)}}} Factor out {{{12}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-12)(x-10)}}} Combine like terms. Or factor out the common term {{{x-10}}}



===============================================================



Answer:



So {{{x^2-22x+120}}} factors to {{{(x-12)(x-10)}}}.



In other words, {{{x^2-22x+120=(x-12)(x-10)}}}.



Note: you can check the answer by expanding {{{(x-12)(x-10)}}} to get {{{x^2-22x+120}}} or by graphing the original expression and the answer (the two graphs should be identical).



Let me know if you need more help or if you need me to explain a step in more detail.
Feel free to email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>
or you can visit my website here: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a>


Thanks,


Jim