Question 911761
do you have this
{{{10(5-10^3x-5)=9}}}

or this
{{{10(5-10^(3x-5))=9}}}

ok

{{{10(5-10^(3x-5))=9}}}

{{{50-10*10^(3x-5)=9}}}

{{{50-10^(3x-5+1)=9}}}

{{{50-10^(3x-4)=9}}}

{{{50-9=10^(3x-4)}}}..............since {{{10^(3x-4)=10^(3x)/10^4}}} we have

{{{49=10^(3x)/10^4}}}

{{{49*10^4=10^(3x)}}}

{{{490000 = 1000^x}}}

{{{log((49*10^4))=log(10^(3x))}}}

{{{log((7^2*10^4))=log(10^(3x))}}}

{{{log((7^2*10^4))=log(10^(3x))}}} ..........{{{10^4=2^4*5^4}}}

{{{log((7^2*2^4*5^4))=3x*log(10)}}}

{{{2(log((7*2^2*5^2)))=3x*log(2*5)}}}

{{{2(log(7)+2log(2)+2log(5))=3x*log(10)}}}


{{{2(log(7)+2log(2)+2log(5))/(3(log(2)+log(5)))=x}}}


real solution:

{{{x = (2(2log((2))+2log((5))+log((7))))/(3(log((2))+log((5))))}}}