Question 77201
<pre><font size = 5><b>
Please show me how to solve this problem. thanks! 

{{{(8x^3y^4)/(3xy^7)}}}÷{{{(9x^2y^2)/(2x^5y^6)}}}

Invert the second fraction and change ÷ to </b><font size = 4>×</font><b>

{{{(8x^3y^4)/(3xy^7)}}}</b><font size = 3>×</font><b>{{{(2x^5y^6)/(9x^2y^2)}}}

Give the x in the bottom of the first fraction its
understood exponent of 1:

{{{(8x^3y^4)/(3x^1y^7)}}}</b><font size = 3>×</font><b>{{{(2x^5y^6)/(9x^2y^2)}}}

On both top and bottom, multiply the coefficients,
add the exponents of the x's and of the y's:

{{{(8*2x^(3+5)y^(4+6))/(3*9x^(1+2)y^(7+2))}}}

{{{(16x^8y^10)/(27x^3y^9)}}}

Divide by subtracting exponents of x and y

{{{(16x^5y^1)/27}}}

We can erase the 1 exponent of the y, leaving
it understood:

{{{(16x^5y)/27}}}

Edwin</pre>