Question 77197
If you travel 65 km north and than 75 km east, you have formed the legs of a triangle.  The distance traveled represents the hypotenuse of the triangle.  Us the Pythagorean Theorem to solve:
{{{(a^2 + b^2)}}}={{{(c^2)}}}
a=65
b=75
c=the hypotenuse

.
Plug-in the values and solve for c:
{{{(65^2 + 75^2)}}}={{{(c^2)}}}
{{{(9850)}}}={{{(c^2)}}}
{{{(sqrt(9850))}}}={{{(sqrt(c^2))}}} [solve for the c-term by taking the square root of each side]
.
{{{(sqrt(9850))}}}={{{(sqrt(c^2))}}}
99.247=c
.
Check by plugging all of the values back into the original formula:
{{{(a^2 + b^2)}}}={{{(c^2)}}}
{{{(65^2 + 75^2)}}}={{{(99.247^2)}}}
9850=9849.987 [close enough]