Question 77061
:
{{{12/((3x-2))}}} + {{{5/((x+4))}}} = 1
:
Multiply equation by (3x-2)(x+4) to get rid of the denominators, you then have:
12(x+4) + 5(3x-2) = (3x-2)(x+4)
:
12x + 48 + 15x - 10 = 3x^2 + 10x - 8
:
27x + 38 = 3x^2 + 10x - 8
:
0 = 3x^2 + 10x - 27x - 8 - 38
:
A quadratic equation:
3x^2 - 17x - 46 = 0
:
Factors to:
(3x-23)(x+2) = 0
:
3x = 23
x = 23/3
and 
x = -2
:
:
Check solution using -2:
{{{12/((3(-2)-2))}}} + {{{5/((-2+4))}}} = 1
{{{12/((-8))}}} + {{{5/((2))}}} = 1
-1.5 + 2.5 = 1, proves our solution of -2, 
:
I checked the x = 23/3 solution, using decimals on a calc. Anyway, did the
method make sense to you?