Question 909047
<pre>
You forgot to give the Cost function, so I made one up,

C = 700x + 500y

------------------------------

Minimize the cost function

C = 700x + 500y 

subject to these constraints:

{{{system(40x+10y>=2600,
10X+15y>=2100,
5x+12y>=1500,
x>=0, 
y>=0)}}}

Draw the boudary lines, determine the feasible region,
and find the intersections of the corner points of the
feasible region: 

{{{drawing(400,1040/3,-25,350,-25,300,
locate(100,200,"FEASIBLE_REGION"),
locate(34,130,"(36,116)"),locate(58,114,"(60,100)"),
line(-30,0,320,0),line(0,-30,0,320),line(0,125,300,0),line(0,140,210,0),
locate(2,270,"(0,260)"), locate(300,16,"(300,0)"),
line(0,260,65,0) )}}}  {{{matrix(7,5,

Corner, "", "",    Value,     "",     
Point,  "", "",  C=700x+500y, "",
"------", "", "","----------", "",     
"(0,260)","","",   "$130,000","", 
"(36,116)","","",  "$83,200","",
"(60,100)","","",  "$92,000","", 
"(300,0)","","",    "$210,000","")}}}

So we see that the cost is lowest at $83,200 when x=36 and y=116.

Edwin</pre>