Question 906749
A.  {{{   2(x - 5)(2x + 3) + 2(x - 5)^2   =   0   }}} 

{{{   2(x - 5)((2x + 3) + (x - 5))   =   0   }}} 

{{{2(x-5)(2x+3+x-5)=0}}}

{{{(x-5)(3x-2)=0}}}

x=5 OR x=2/3



B.  {{{   2x^(2/3)    -    5x^(1/3)    =    12    }}}

x^3*2x^(2/3)/x^3 +5x^3*x^(1/3)/x^3= 12

2x^6+5x^9=12x^3

5x^9+2x^6-12x^3=0

x^3(5x^6+2x^3-12)=0

x=0 is one solution

lt x^3=a
5a^2+2a-12=0
Find the roots of the equation by quadratic formula							
							
a=	5    	b=	2    	c=	-12    		
							
b^2-4ac=	4    	-	-240    				
b^2-4ac=	244    			{{{sqrt(	244    	)}}}=	15 5/8
{{{x=(-b+-sqrt(b^2-4ac))/(2a)}}}							
{{{x1=(-b+sqrt(b^2-4ac))/(2a)}}}							
x1=(	-2    	+	15 5/8	)/	10    		
x1=	1 3/8						
x2=(	-2    	-15 5/8	) /	10    			
x2=	-1 3/4						
a=11/8 OR -7/4
x^3=11/8 OR x^3= -7/4






C.  {{{   (y  -  2)^(1/2)   -   (5y + 1)^(1/2)  =  -  3  }}}