Question 902317
My question is find what x and y is. 
The equations are:
x - y = 5
   and
x * y = 8

--------------------------------------------------------------


Solve the first equation for x


{{{x - y = 5}}}


{{{x - y+y = 5+y}}}


{{{x = 5+y}}}


Then plug that into {{{x * y = 8}}}


{{{x * y = 8}}}


{{{(5+y) * y = 8}}}


{{{y*(5+y) = 8}}}


{{{y*5+y*y = 8}}}


{{{5y+y^2 = 8}}}


{{{5y+y^2-8 = 0}}}


{{{y^2+5y-8 = 0}}}


Now use the quadratic formula to solve for y


{{{y = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{y = (-(5)+-sqrt((5)^2-4(1)(-8)))/(2(1))}}} Plug in {{{a = 1}}}, {{{b = 5}}}, {{{c = -8}}}  


{{{y = (-5+-sqrt(25-(-32)))/(2)}}}


{{{y = (-5+-sqrt(25+32))/(2)}}}


{{{y = (-5+-sqrt(57))/2}}}


{{{y = (-5+sqrt(57))/2}}} or {{{y = (-5-sqrt(57))/2}}}


{{{y = 1.274917}}} or {{{y = -6.274917}}} These are approximate


Finally, you would use these solutions to find x (plug them into {{{x = 5+y}}}). I'll let you do this part.