Question 901413
The transformations rules can be summarized as: 
{{{f(x) + a}}}- means {{{f(x)}}} shifted {{{upward}}} {{{a}}}{{{ units }}}
{{{f(x) -a}}}- means {{{f(x)}}} shifted {{{downward}}} {{{a}}} {{{units }}}
{{{f(x + a)}}}- means {{{f(x)}}} shifted {{{left}}} {{{a}}} {{{units }}}
{{{highlight(f(x -a))}}}- means {{{f(x)}}} shifted {{{right}}} {{{a}}} {{{units }}} 
{{{-f(x)}}}- means {{{f(x)}}} is {{{flipped}}} {{{upside}}}{{{ down}}} (reflected about the {{{x-axis}}}) 
{{{f(-x)}}} is the mirror of {{{f(x)}}} (reflected about the {{{y-axis}}})

you are given {{{f(x)=x^2}}}

{{{ graph( 600, 600, -10, 10, -10, 10,  x^2) }}}


and you need to find an equation for the horizontal translation of 
{{{f(x)=x^2}}}  {{{3.7}}} units right, you need {{{f(x-a) }}}

{{{f(x-a)=(x-a)^2 }}} where {{{a=3.7}}}

{{{f(x-3.7)=(x-3.7)^2}}}

{{{ graph( 600, 600, -10, 10, -10, 10,  (x-3.7)^2) }}}


let's see both functions on same graph:


{{{ graph( 600, 600, -10, 10, -10, 10,  x^2,(x-3.7)^2) }}}