Question 897873
Find a numerical value of one trigonometric function of x if [tan(x)/cot(x)]-[sec(x)/cos(x)]=[2/csc(x)] 
{{{tan(x)/cot(x)-sec(x)/cos(x)=2/csc(x)}}}
{{{tan^2(x)-1/cos^2(x)=2sin(x)}}}
{{{sin^2(x)/cos^2(x)-1/cos^2(x)=2sin(x)}}}
{{{(sin^2(x)-1)/cos^2(x)=2sin(x)}}}
{{{(cos^2(x))/cos^2(x)=2sin(x)}}}
2sin(x)=1
sin(x)=1/2(ans. D)