Question 896456
Solve using completing the square method the equation: 3x^2 + 11x + 4 = 0
<pre>
{{{3x^2 + 11x + 4 = 0}}}
{{{3x^2 + 11x = - 4}}} 
{{{3x^2/3 + 11x/3 = (- 4)/3}}} ----- Dividing by GCF, 3 to make leading coefficient ({{{x^2}}}), 1
{{{x^2 + (11/3)x = - 4/3}}}
{{{x^2 + (11/3)x + ____ = - 4/3 + ____}}}
{{{x^2 + (11/3)x + (11/6)^2 = - 4/3 + (11/6)^2}}} ----- Halving b, or  ({{{11/3}}}), squaring it, and then adding to both sides
{{{(x + 11/6)^2 = - 4/3 + (11/6)^2}}}
{{{(x + 11/6)^2 = - 4/3 + 121/36}}}
{{{(x + 11/6)^2 = - 48/36 + 121/36}}}
{{{(x + 11/6)^2 = 73/36}}}
{{{x + 11/6 = 0 +- sqrt(73/36)}}} -------- Taking square root of both sides
{{{x = - 11/6 +- sqrt(73/36) – 11/6}}}
{{{x = - 11/6 + sqrt(73)/6}}}			OR			{{{x = - 11/6 - (sqrt(73))/6}}}
{{{highlight_green(x = (sqrt(73) - 11)/6)}}}			OR			{{{highlight_green(x = (- sqrt(73) - 11)/6)}}}