Question 892705
It helps to draw the angle on 
a unit circle, approximately
------------------------
1)
145 degrees is 35 degrees short
of 180 degrees
( {{{ 145 = 180 - 35 }}} )
and
I can use {{{ pi / 180  = 1 }}} radian / degrees
as a multiplier without changing values
{{{ ( pi/180 )*180 - ( pi/i80 )*35 }}}
{{{ pi - ( 35/180 )*pi }}}
{{{ pi - .1944*pi }}}
{{{ .8055*pi }}}
--------------------
2)
Note that 1' is {{{ (1/60)*1 }}} degree
{{{ ( 14/60 )*( pi/180 ) }}} = ( fraction of a degree )x( radians/degree )
{{{ ( 7/30 )*( pi/180 ) }}}
{{{  ( 7/5400 )*pi = .001296*pi }}}
and
{{{ ( 10 )*(pi/180 ) = .0555*pi }}}
{{{ .0555*pi + .001296*pi }}}
{{{ .05685*pi }}}
-----------------------------------
3)
4" is {{{ 4/360 }}} of a degree ( {{{ 4*(1/60)*(1/60) }}}
{{{ ( 4/360 )*( pi/180 ) 
{{{ ( 1/90 )*( pi/180 ) }}}
{{{ ( 1/16200 )*pi }}}
{{{ .000061728*pi }}}
and
{{{ ( 13/60 )*( pi/180 ) }}}
{{{ ( 13/10800 )*pi }}}
{{{ .0012037*pi }}}
and
{{{ 56*( pi/180 ) }}}
{{{ .31111*pi }}}
adding up:
{{{ ( .000061728 + .0012037 + .31111 )*pi }}}
{{{ .3124*pi }}} ( more decimal points available )
--------------
check my math