Question 891954
<font face="Times New Roman" size="+2">
Log Base Change Formula:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \log_b(\alpha)\ =\ \frac{\log_c(\alpha)}{\log_c(b)}]


So presuming *[tex \Large x\ >\ 0],


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \log_x(2)\ =\ \frac{\log_2(2)}{\log_2(x)}]


But since *[tex \Large \log_b(b)\ =\ 1\ \forall\ b\ \in\ \mathbb{R}\ |\ b\ >\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \log_x(2)\ =\ \frac{1}{\log_2(x)}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>


*[tex \LARGE \ \ \ \ \ \ \ \ \ \