Question 887717


Looking at the expression {{{8x^2+5x-200}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{5}}}, and the last term is {{{-200}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{-200}}} to get {{{(8)(-200)=-1600}}}.



Now the question is: what two whole numbers multiply to {{{-1600}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-1600}}} (the previous product).



Factors of {{{-1600}}}:

1,2,4,5,8,10,16,20,25,32,40,50,64,80,100,160,200,320,400,800,1600

-1,-2,-4,-5,-8,-10,-16,-20,-25,-32,-40,-50,-64,-80,-100,-160,-200,-320,-400,-800,-1600



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-1600}}}.

1*(-1600) = -1600
2*(-800) = -1600
4*(-400) = -1600
5*(-320) = -1600
8*(-200) = -1600
10*(-160) = -1600
16*(-100) = -1600
20*(-80) = -1600
25*(-64) = -1600
32*(-50) = -1600
40*(-40) = -1600
(-1)*(1600) = -1600
(-2)*(800) = -1600
(-4)*(400) = -1600
(-5)*(320) = -1600
(-8)*(200) = -1600
(-10)*(160) = -1600
(-16)*(100) = -1600
(-20)*(80) = -1600
(-25)*(64) = -1600
(-32)*(50) = -1600
(-40)*(40) = -1600


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-1600</font></td><td  align="center"><font color=black>1+(-1600)=-1599</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-800</font></td><td  align="center"><font color=black>2+(-800)=-798</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-400</font></td><td  align="center"><font color=black>4+(-400)=-396</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-320</font></td><td  align="center"><font color=black>5+(-320)=-315</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-200</font></td><td  align="center"><font color=black>8+(-200)=-192</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-160</font></td><td  align="center"><font color=black>10+(-160)=-150</font></td></tr><tr><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>16+(-100)=-84</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-80</font></td><td  align="center"><font color=black>20+(-80)=-60</font></td></tr><tr><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>-64</font></td><td  align="center"><font color=black>25+(-64)=-39</font></td></tr><tr><td  align="center"><font color=black>32</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>32+(-50)=-18</font></td></tr><tr><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>40+(-40)=0</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>1600</font></td><td  align="center"><font color=black>-1+1600=1599</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>800</font></td><td  align="center"><font color=black>-2+800=798</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>400</font></td><td  align="center"><font color=black>-4+400=396</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>320</font></td><td  align="center"><font color=black>-5+320=315</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>200</font></td><td  align="center"><font color=black>-8+200=192</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>160</font></td><td  align="center"><font color=black>-10+160=150</font></td></tr><tr><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>-16+100=84</font></td></tr><tr><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>80</font></td><td  align="center"><font color=black>-20+80=60</font></td></tr><tr><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>64</font></td><td  align="center"><font color=black>-25+64=39</font></td></tr><tr><td  align="center"><font color=black>-32</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>-32+50=18</font></td></tr><tr><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-40+40=0</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{5}}}. So {{{8x^2+5x-200}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{8x^2+5x-200}}} doesn't factor at all (over the rational numbers).



So {{{8x^2+5x-200}}} is prime.



To solve {{{8x^2+5x-200=0}}} you need to use the quadratic equation.