Question 883292


Looking at the expression {{{x^2-5x-24}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last term is {{{-24}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-24}}} to get {{{(1)(-24)=-24}}}.



Now the question is: what two whole numbers multiply to {{{-24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-24}}} (the previous product).



Factors of {{{-24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-24}}}.

1*(-24) = -24
2*(-12) = -24
3*(-8) = -24
4*(-6) = -24
(-1)*(24) = -24
(-2)*(12) = -24
(-3)*(8) = -24
(-4)*(6) = -24


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>1+(-24)=-23</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>2+(-12)=-10</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>3+(-8)=-5</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>4+(-6)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-1+24=23</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-2+12=10</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-3+8=5</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-4+6=2</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-8}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-8}}} both multiply to {{{-24}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5x}}} with {{{3x-8x}}}. Remember, {{{3}}} and {{{-8}}} add to {{{-5}}}. So this shows us that {{{3x-8x=-5x}}}.



{{{x^2+highlight(3x-8x)-24}}} Replace the second term {{{-5x}}} with {{{3x-8x}}}.



{{{(x^2+3x)+(-8x-24)}}} Group the terms into two pairs.



{{{x(x+3)+(-8x-24)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)-8(x+3)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-8)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}



===============================================================



Answer:



So {{{x^2-5x-24}}} factors to {{{(x-8)(x+3)}}}.



In other words, {{{x^2-5x-24=(x-8)(x+3)}}}.



Note: you can check the answer by expanding {{{(x-8)(x+3)}}} to get {{{x^2-5x-24}}} or by graphing the original expression and the answer (the two graphs should be identical).