Question 883247


Looking at the expression {{{10a^2-11a+3}}}, we can see that the first coefficient is {{{10}}}, the second coefficient is {{{-11}}}, and the last term is {{{3}}}.



Now multiply the first coefficient {{{10}}} by the last term {{{3}}} to get {{{(10)(3)=30}}}.



Now the question is: what two whole numbers multiply to {{{30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{30}}} (the previous product).



Factors of {{{30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{30}}}.

1*30 = 30
2*15 = 30
3*10 = 30
5*6 = 30
(-1)*(-30) = 30
(-2)*(-15) = 30
(-3)*(-10) = 30
(-5)*(-6) = 30


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>1+30=31</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>2+15=17</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>3+10=13</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>5+6=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-1+(-30)=-31</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-2+(-15)=-17</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-3+(-10)=-13</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>-5+(-6)=-11</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{-6}}} add to {{{-11}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{-6}}} both multiply to {{{30}}} <font size=4><b>and</b></font> add to {{{-11}}}



Now replace the middle term {{{-11a}}} with {{{-5a-6a}}}. Remember, {{{-5}}} and {{{-6}}} add to {{{-11}}}. So this shows us that {{{-5a-6a=-11a}}}.



{{{10a^2+highlight(-5a-6a)+3}}} Replace the second term {{{-11a}}} with {{{-5a-6a}}}.



{{{(10a^2-5a)+(-6a+3)}}} Group the terms into two pairs.



{{{5a(2a-1)+(-6a+3)}}} Factor out the GCF {{{5a}}} from the first group.



{{{5a(2a-1)-3(2a-1)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(5a-3)(2a-1)}}} Combine like terms. Or factor out the common term {{{2a-1}}}



===============================================================



Answer:



So {{{10a^2-11a+3}}} factors to {{{(5a-3)(2a-1)}}}.



In other words, {{{10a^2-11a+3=(5a-3)(2a-1)}}}.



Note: you can check the answer by expanding {{{(5a-3)(2a-1)}}} to get {{{10a^2-11a+3}}} or by graphing the original expression and the answer (the two graphs should be identical).