Question 882926
Convert it to vertex form, {{{y=a(x-h)^2+k}}}, by completing the square.
{{{f(x)=2x^2+12x}}}
{{{f(x)=2(x^2+6x)}}}
{{{f(x)=2(x^2+6x+9)-2(9)}}}
{{{f(x)=2(x+3)^2-18}}}
The vertex is (-3,-18).
The parabola opens upwards.
The minimum value is {{{y=-18}}}.
.
.
.
{{{drawing(300,300,-5,5,-25,5,grid(1),circle(-3,-18,0.24),graph(300,300,-5,5,-25,5,2x^2+12x))}}}