Question 882098
I'm assuming you want to factor.



Looking at the expression {{{9x^2+49x+20}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{49}}}, and the last term is {{{20}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{20}}} to get {{{(9)(20)=180}}}.



Now the question is: what two whole numbers multiply to {{{180}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{49}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{180}}} (the previous product).



Factors of {{{180}}}:

1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180

-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{180}}}.

1*180 = 180
2*90 = 180
3*60 = 180
4*45 = 180
5*36 = 180
6*30 = 180
9*20 = 180
10*18 = 180
12*15 = 180
(-1)*(-180) = 180
(-2)*(-90) = 180
(-3)*(-60) = 180
(-4)*(-45) = 180
(-5)*(-36) = 180
(-6)*(-30) = 180
(-9)*(-20) = 180
(-10)*(-18) = 180
(-12)*(-15) = 180


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{49}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>1+180=181</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>2+90=92</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>3+60=63</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>45</font></td><td  align="center"><font color=red>4+45=49</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>5+36=41</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>6+30=36</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>9+20=29</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>10+18=28</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>12+15=27</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>-1+(-180)=-181</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>-2+(-90)=-92</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-3+(-60)=-63</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-4+(-45)=-49</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-5+(-36)=-41</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-6+(-30)=-36</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-9+(-20)=-29</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-10+(-18)=-28</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-12+(-15)=-27</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{45}}} add to {{{49}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{45}}} both multiply to {{{180}}} <font size=4><b>and</b></font> add to {{{49}}}



Now replace the middle term {{{49x}}} with {{{4x+45x}}}. Remember, {{{4}}} and {{{45}}} add to {{{49}}}. So this shows us that {{{4x+45x=49x}}}.



{{{9x^2+highlight(4x+45x)+20}}} Replace the second term {{{49x}}} with {{{4x+45x}}}.



{{{(9x^2+4x)+(45x+20)}}} Group the terms into two pairs.



{{{x(9x+4)+(45x+20)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(9x+4)+5(9x+4)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+5)(9x+4)}}} Combine like terms. Or factor out the common term {{{9x+4}}}



===============================================================



Answer:



So {{{9x^2+49x+20}}} factors to {{{(x+5)(9x+4)}}}.



In other words, {{{9x^2+49x+20=(x+5)(9x+4)}}}.



Note: you can check the answer by expanding {{{(x+5)(9x+4)}}} to get {{{9x^2+49x+20}}} or by graphing the original expression and the answer (the two graphs should be identical).