Question 73986
4) 	For a fixed rate, a fixed principal amount, and a fixed compounding cycle, the return is an exponential function of time. Using the formula,A=P(1+r/n)^nt  , let r = 10%, P = 1, and n = 1 and give the coordinates (t, A) for the points where t = 0, 1, 2, 3, 4. Round your answer to the hundredth's place.

a)	Show coordinates in this space
(0,1); (1,1.1); (2,1.21);  (3,1.33); (4,1.46)  


Show work in this space
r=.10  P=1  n=1
{{{A=1(1+.10/1)^(1t)}}}
{{{A=(1+.10)^t}}}
{{{A=(1.1)^t}}}
for t=0
{{{A=(1.1)^0}}}
{{{A=1}}}  (0,1)
for t=1
{{{A=(1.1)^1}}}
{{{A=1.1}}} (1,1.1)
for t=2
{{{A=(1.1)^2}}}
{{{A=1.21}}} (2,1.21)
for t=3
{{{A=(1.1)^3}}}
{{{A=1.331}}}  (3,1.33)
for t=4
{{{A=(1.1)^4}}}
{{{A=1.4641}}} (4,1.46)
:
b) 	Show graph here	
{{{graph(300,200,-10,10,-3,10,(1.1)^x)}}}
Happy Calculating!!!!