Question 880225
Look at the possible choices.
{{{RR=(5/22)(5/22)=25/484}}}
{{{RG=(5/22)(6/22)=30/484}}}
{{{RB=(5/22)(11/22)=55/484}}}
{{{GR=(6/22)(5/22)=30/484}}}
{{{GG=(6/22)(6/22)=36/484}}}
{{{GB=(6/22)(11/21)=66/484}}}
{{{BR=(11/22)(5/21)=55/484}}}
{{{BG=(11/22)(6/21)=66/484}}}
{{{BB=(11/22)(11/21)=121/484}}}
If you add them you will find that them sum to {{{484/484}}} or {{{1}}}.
So the probability of {{{R}}} then {{{G}}} are,
{{{P(RG)=30/484=15/242}}}