Question 73953
{{{((x^3+y^3+z^3-3xyz)/(a^3+b^3+c^3-3abc))((a^2+b^2+c^2-ab-bc-ca)/(x^2+y^2+z^2-xy-yz-zx))}}}
Factor the top and bottom of the first fraction
{{{(((x+y+z)(x^2+y^2+z^2-xy-yz-zx))/((a+b+c)(a^2+b^2+c^2-ab-bc-ca)))((a^2+b^2+c^2-ab-bc-ca)/(x^2+y^2+z^2-xy-yz-zx))}}}
multiply the fractions leaving everything in factored form
{{{((x+y+z)(x^2+y^2+z^2-xy-yz-zx)(a^2+b^2+c^2-ab-bc-ca))/((a+b+c)(a^2+b^2+c^2-ab-bc-ca)(x^2+y^2+z^2-xy-yz-zx))}}}
Cancel factor that are the same in the numerator and the denominator
{{{(x+y+z)/(a+b+c)}}}