Question 875883
A circle always gives more area than a square for a given perimeter.
.
.
.
For a square,
{{{P=4s=20}}}
{{{s=5}}}
{{{A=s^2=25}}}{{{m^2}}}
For a circle,
{{{C=2*pi*R=20}}}
{{{R=10/pi}}}
{{{A=pi*R^2=pi*(10/pi)^2=100/pi}}}{{{m^2}}} 
Since {{{25=(25*pi)/pi}}} and {{{pi<4}}}, then
{{{25<100/pi}}}
So the circle area is greater than the square area.