Question 870657
A(-1,3), B(5,7 and C(0,8)
are the vertices of right triangle

so their lengths follow Pythagorean principle

Sum of square of two sides = square of the third side
find AB , BC, CA by using distance formula

d(AB)
Distance between two points				A & B									
x1	y1	x2	y2										
													
-1	3	5	7										
d=	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}												
d=	{{{sqrt((		7	-	3	)^2	+	(	5	-	-1	)^2	)}}}
d=	{{{sqrt((		4	)^2	+	(	6	)^2	)}}}				
d=	{{{sqrt((		52	)  	)}}}								
d=	7.21	

d(B,C)	

Distance between two points				B&C									
x1	y1	x2	y2										
													
5	7	0	8										
d=	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}												
d=	{{{sqrt((		8	-	7	)^2	+	(	0	-	5	)^2	)}}}
d=	{{{sqrt((		1	)^2	+	(	-5	)^2	)}}}				
d=	{{{sqrt((		26	)  	)}}}								
d=	5.10	

d(A,C)

Distance between two points				A&C									
x1	y1	x2	y2										
													
-1	3	0	8										
d=	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}												
d=	{{{sqrt((		8	-	3	)^2	+	(	0	-	-1	)^2	)}}}
d=	{{{sqrt((		5	)^2	+	(	1	)^2	)}}}				
d=	{{{sqrt((		26	)  	)}}}								
d=	5.10												

(5.10)^2+5.10)^^2=52.02
										(7.2)^2= 51.98