Question 869646
It is unclear if you mean {{{(4/7)y - 3}}}, {{{4/(7y) - 3}}} or {{{4/(7y - 3)}}}



Please use parenthesis to properly group the terms and show which terms are in the denominator of the fraction



For instance if you mean {{{4/(7y) - 3}}}, then you'd write 4/(7y) - 3



If you mean {{{4/(7y - 3)}}}, then you'd write 4/(7y - 3)



-------------------------------------------------------



If the expression is {{{(4/7)y - 3}}}, then....



{{{(4/7)y - 3}}}



{{{(4/7)(14) - 3}}} Plug in {{{y=14}}}



{{{(4/7)(14/1) - 3}}}



{{{(4*14)/(7*1) - 3}}}



{{{56/7 - 3}}}



{{{8 - 3}}}



{{{5}}}



That means {{{(4/7)y - 3=5}}} when {{{y=14}}}



-------------------------------------------------------



If the expression is {{{4/(7y) - 3}}}, then....



{{{4/(7y) - 3}}}



{{{4/(7*14) - 3}}}



{{{4/98 - 3}}}



{{{2/49 - 3}}}



{{{2/49 - 3(49/49)}}}



{{{2/49 - 147/49}}}



{{{(2 - 147)/49}}}



{{{-145/49}}}



That means {{{4/(7y) - 3=-145/49}}} when {{{y=14}}}



-------------------------------------------------------



If the expression is {{{4/(7y - 3)}}}, then....



{{{4/(7y - 3)}}}



{{{4/(7*14 - 3)}}}



{{{4/(98 - 3)}}}



{{{4/95}}}



That means {{{4/(7y - 3)=4/95}}} when {{{y=14}}}