Question 868242
{{{5t-7/k=11-6t/k }}} 
Add {{{6t/k}}} to both sides, subtract {{{5t}}} from both sides
{{{(6t)/k+5t-5t-7/k=11-(6t)/k+(6t)/k-5t }}}
{{{(6t)/k+0-7/k=11-0-5t }}}
{{{(6t)/k-7/k=11-5t}}}
Pull out {{{(1/k)}}} from both terms on the left hand side.
{{{(1/k)(6t-7)=(11-5t)}}}
Multiply both side by {{{k}}}
{{{k/k(6t-7)=k(11-5t)}}}
{{{(1)(6t-7)=k(11-5t)}}}
Divide both sides by {{{(11-5t)}}}
{{{(6t-7)/(11-5t)=k((11-5t)/(11-5t))}}}
{{{(6t-7)/(11-5t)=k(1)}}}
Re-arrange the terms in the denominator so {{{t}}} term is first.
{{{k=(6t-7)/(-5t+11)}}}