Question 72655
{{{f(x)= x^2/(x-1)}}}
So {{{f(-x)= (-x)^2/((-x)-1)}}}
or {{{f(-x)= x^2/(-x-1)}}}
or {{{f(-x)= - x^2/(x+1)}}}

Thus {{{f(-x)}}} is neither equal to {{{f(x)}}} nor to {{{-f(x)}}}.
So {{{f(x)}}} is neither odd nor even.

Remark: If {{{f(-x)=f(x)}}} then {{{f(x)}}} is called even function and if {{{f(-x)=-f(x)}}} then {{{f(x)}}} is called odd function.