Question 861357
let the natural numbers be x,x+1,x+2,x+3

The product is 255024


x(x+1)(x+2)(x+3)=255024

rearrange

x(x+3)(x+1)(x+2)=255024

(x^2+3x)(x^2+3x+2)=255024

let x^2+3x=a

a(a+2)=255204

a^2+2a= 255024

a^2+2a+1=255024+1

(a+1)^2= 255025

take the square root

(a+1) = +/- 505

a=504 OR -506

substitute a

x^2+3x-504 =0

x^2+24x-21x-504=0

x(x+24)-21(x+24)=0

(x+24)(x-21)=0

x= 21 a natural number

OR

x^2+3x=-506

x^2+3x+506=0

the roots are not real

Hence x=21

21,22,23,24 are the numbers