Question 861125
I believe the problem and the multiple choice answers are:
{{{36(a^-3b^10)(-2^2)/((169a^5b^9)^0(-12a^-8b^12))}}}
a) {{{-12a^5/b^2}}}
b) {{{12a^5/b^2}}}
c) {{{12a^5b^2}}}
d) {{{12a^5/169b^2}}}
 
By definition, if {{{anything<>0}}} , then {{{anything^0=1}}} ,
so unless {{{a=0}}} or {{{b=0}}} , {{{(169a^5b^9)^0=1}}} and
{{{36(a^-3b^10)(-2^2)/((169a^5b^9)^0(-12a^-8b^12))=36(a^-3b^10)(-2^2)/(-12a^-8b^12)}}}
Then,
{{{36(a^-3b^10)(-2^2)/((169a^5b^9)^0(-12a^-8b^12))=36(a^-3b^10)(-2^2)/(-12a^-8b^12)=3*12*(a^-3)*(b^10)*(-4)/(-12*a^-8*b^12)}}}
={{{-4*3*(12/(-12))*(a^-3/a^-8)*(b^10/b^12)=-4*3*(-1)*a^((-3-(-8)))*b^((10-12))=12*a^5*b^-2=12a^5/b^2}}}