Question 856935
{{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=n/(n-2) + (n+3)/(n+7) + (15n+69)/((n+7)(n-2))}}}
 {{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=(n(n+7))/((n-2)(n+7)) + ((n+3)(n-2))/((n-2)(n+7)) + (15n+69)/((n+7)(n-2))}}}
 {{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=(n(n+7)+(n+3)(n-2)+ (15n+69))/((n+7)(n-2))}}}
 {{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=((n^2+7n)+(n^2+n-6)+ (15n+69))/((n+7)(n-2))}}}
 {{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=(2n^2+23n+63)/((n+7)(n-2))}}}<--- This matches your answer but you can factor this.
{{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=((2n+9)(n+7))/((n+7)(n-2))}}}
{{{n/(n-2) + (n+3)/(n+7) + (15n+69)/(n^2+5n-14)=(2n+9)/(n-2)}}}