Question 856666
Keep in mind that n! = n*(n-1)*(n-2)...(3)*(2)*(1)



You can shorten this to say n! = n(n-1)!



Similarly, (n+1)! = (n+1)*n! which leads to (n+1)! = (n+1)*n*(n-1)!



We'll use these equations to make substitutions below




----------------------------------------------------------------------------------




(n+1)!-3(n!)+(n-1)!=(n-1)!(n-1)^2



(n+1)*(n)*(n-1)!-3(n)*(n-1)!+(n-1)!=(n-1)!(n-1)^2



(n-1)! [ (n+1)*(n)-3(n)+1 ] = (n-1)!(n-1)^2



(n-1)! [ n^2+n-3n+1 ] = (n-1)!(n-1)^2



(n-1)! [ n^2-2n+1 ] = (n-1)!(n-1)^2



(n-1)! (n-1)^2 = (n-1)!(n-1)^2



So the identity is confirmed.



Notice how I only changed the left side and didn't alter the right side.