Question 856038
<pre>
Let one integer be x. Then the other is 3*x - 10
Sum of squares = {{{x^2 + (3*x - 10)^2) = x^2 + 9*x^2 - 60*x + 100 = 100}}}
i.e. {{{10*x^2 - 60*x = 0}}}
Simplifying
{{{x*(x - 6) = 0}}}
So, {{{x = 0}}} or {{{x = 6}}}
If x = 0, the other number = 3*0 - 10 = -10
If x = 6, the other number = 3*6 - 10 = 8

So the solutions are (0,-10) or (6,8)

Hope this clarifies :)
</pre>