Question 72121
let log(base a)m = X ; let log(base a)n= Y
Then a^(X)=m and a^Y=n
Then m/n = a^X/a^Y = a^(X-Y)
Take the log(base a) of both sides to get:
log(base a)(m/n) = log(base a)a^(X-Y)
log(base a)(m/n) = X-y
log(base a)(x/n) = log(base a)m - log(base a)n
==============
The proof for log(base a)mn = log(base a)m + log(base a)n 
is almost identical:
You get a line that says:
mn=a^X * a^Y = a^(X+Y)
Take the log(base a) of both sides to get:
log(base a)mn = log(base a)a^(X+Y)
log(base a)mn = X+Y
log(base a)mn = log(base a)m + log(base a)n
-------------
 log(base a)m^n = ?
Let log(base a)m = X
Then a^X = m
Substitute for "m" to get:
log(base a)(a^X)^n = log(base a)a^(Xn)= Xn
Substitute for X to get:
=nlog(base a)m
----------------
Log(base a)b = x
Let a^x = b 
Then x log(base 10) a = log(base 10 b
And x= [log(base 10)b] / [log(base 10)a]
Substitute for "x" to get
log(base a)b = log(base 10)b /log(base 10)a
-----------
Cheers,
Stan H.