Question 855061
{{{32*(qx)^4-162*(pt)^4=(sqrt(32)(qx)^2-sqrt(162)(pt)^2)*(sqrt(32)(qx)^2+sqrt(162)(pt)^2)}}}
{{{32*(qx)^4-162*(pt)^4=(sqrt(sqrt(32))(qx)-sqrt(sqrt(162))(pt))*(sqrt(sqrt(32))(qx)+sqrt(sqrt(162))(pt))*(sqrt(32)(qx)^2+sqrt(162)(pt)^2)}}}
.
.
{{{sqrt(32)=4sqrt(2)}}}
{{{sqrt(sqrt(32))=2*sqrt(sqrt(2))=2A}}}
{{{sqrt(162)=9*sqrt(2)}}}
{{{sqrt(sqrt(162))=3*sqrt(sqrt(2))=3A}}}
where {{{A=sqrt(sqrt(2))}}}
.
.
Simplifying,
{{{32*(qx)^4-162*(pt)^4=(2A(qx)-3A(pt))*(2A(qx)+3A(pt))*(2A(qx)^2+3A(pt)^2)}}}
{{{32*(qx)^4-162*(pt)^4=A(2(qx)-3(pt))*A(2(qx)+3(pt))*A(2(qx)^2+3(pt)^2)}}}
{{{32*(qx)^4-162*(pt)^4=(A^3)(2(qx)-3(pt))*(2(qx)+3(pt))*(2(qx)^2+3(pt)^2)}}}
{{{32*(qx)^4-162*(pt)^4=(2^(3/4))*(2(qx)-3(pt))*(2(qx)+3(pt))*(2(qx)^2+3(pt)^2)}}}