Question 852150
<pre>

Here are all 36 possible dice rolls:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

--------------------------------------------------------

Since we are given that the dice land on different numbers,
we reduce the sample space by eliminating all the cases 
where the numbers are the same, so we only have this
reduced sample space of 30 dice rolls.

--------------------------------------------------------

      (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1)       (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2)       (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3)       (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4)       (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) 

-------------------------------------------------

Now we'll color all the 3's red

-------------------------------------------------

      (1,2) (1,<font color="red"><b>3</b></font>) (1,4) (1,5) (1,6)

(2,1)       (2,<font color="red"><b>3</b></font>) (2,4) (2,5) (2,6) 

(<font color="red"><b>3</b></font>,1) (<font color="red"><b>3</b></font>,2)       (<font color="red"><b>3</b></font>,4) (<font color="red"><b>3</b></font>,5) (<font color="red"><b>3</b></font>,6) 

(4,1) (4,2) (4,<font color="red"><b>3</b></font>)       (4,5) (4,6) 

(5,1) (5,2) (5,<font color="red"><b>3</b></font>) (5,4)       (5,6) 

(6,1) (6,2) (6,<font color="red"><b>3</b></font>) (6,4) (6,5) 

------------------------------------------------

Now count the red threes.  I count 10.  Did I color all the 3's red?
So that's 10 out of 30.  "Out of" means "over" so the probability is
10 over 30 or {{{10/30}}} or {{{1/3}}}.

Edwin</pre>