Question 842430
If you can calculate the polynomial product
{{{(3-5x)(2+6x)}}} , you can almost calculate
{{{(3-5i)(2+6i)= 3*2+3*(6i)+(-5i)*2+(-5i)*(6i)=6+18i-10i-30i^2=6+8i-30i^2}}}
At that point, you have to remember the newly learned fact/definition that
{{{i=sqrt(-1)}}}<-->{{{i^2=-1}}} to substitute {{{(-1)}}} for {{{i^2}}}
{{{(3-5i)(2+6i)= 6+8i-30i^2=6+8i-30(-1)=6+8i+30=highlight(36+8i)}}}