Question 841078
Let the tens digit = {{{ t }}}
Let the units digit = {{{ u }}}
{{{ 10t + 1*u = 4*( t + u ) - 12 }}}
{{{ 10t + 1*u = 2*( u - t ) + 6 }}}
------------------------------
I'm assuming that the units digit is 
greater than the tens digit
By substitution, I can say:
{{{ 4*( t + u ) = 2*( u - t ) + 6 }}}
{{{ 4t + 4u  = 2u - 2t + 6 }}}
{{{ 6t + 2u = 6 }}}
{{{ 3t + u = 3 }}}
--------------
{{{ t = 1 }}} and {{{ u = 0 }}} works
the number is 10
-----------------------------
check answer:
{{{ 4*( t + u ) = 2*( u - t ) + 6 }}}
{{{ 4*( 1 + 0 ) = 2*( 0 - 1 ) + 6 }}}
{{{ 4 = -2 + 6 }}}