Question 839772


Solve algebraically, using one variable.  The length of a rectangle is three less than twice the width.  If the perimeter is 24 inches, what are the length and width of the rectangle?


-------------------------------------------
1.) Get key information out.


length (l) of a rectangle is(=) three (3) less (-) than twice(x2) the width(w).


So length = 2(times)width-3


1ength = 2w-3


width = w

perimeter is(=) 24 inches

perimeter = 24 inches


------------------------------------------
2.) Set up your equation.


***Note: Formula for perimeter is:  2 ( l + w )


2 ( l + w ) = 24



2[(2w-3)+(w)] = 24


(4w-6)+(2w) = 24


4w-6+2w = 24


6w-6 = 24


6w-6+6 = 24+6


6w = 30


6w/6 = 30/6


w = 5


------------------------------------------
3.) Using the value we got for "w" in step 2, plug in to what we said the length is equal to in step 1.  (1 = 2w-3 ).


length= 2w-3


l=2(5)-3


l=10-3


l=7


------------------------------------------
4.) Check with perimeter formula. p = 2( l + w )


Use l=7, w=5, p=24



p = 2( l + w )


24= 2[ (7)+(5) ]


24=14+10


24=24


Answers check!


--------------------------------------
5.) Answer.



If the perimeter is 24 inches, the length of the rectangle is 7 inches and width is 5 inches.