Question 838600
Prove:
(sec^2x -1) / (sec^2x)= sin^2x
{{{(sec^2(x)-1)/sec^2(x)=sin^2(x)}}}
start with left side:
{{{(sec^2(x)-1)/sec^2(x)}}}
..
{{{(tan^2(x))/sec^2(x)}}}
..
{{{(sin^2(x)/cos^2(x))/(1/cos^2(x))=sin^2(x)}}}
verified:left side=right side