Question 835306
Minimize:
{{{C=24X+15Y}}}
With constraints:
{{{7x+11y=77}}}
{{{16x+4y=0}}}
{{{x=0}}}
{{{y=0}}}
.
.
.
{{{graph(300,300,-5,15,-5,15,(77-7x)/11,-4x)}}}
Find the intersection points,
{{{x=11}}}, {{{y=0}}}
{{{x=0}}}, {{{y=0}}}
.
.
When {{{x=0}}},
{{{7(0)+11y=77}}}
{{{y=7}}}
.
.
.
{{{drawing(300,300,-5,15,-5,15,
grid(1),
circle(0,7,.75),
circle(11,0,.75),
circle(0,0,.75),
graph(300,300,-5,15,-5,15,(77-7x)/11,-4x))}}}
.
.

The extrema of the function occurs at the vertices.
{{{C=24X+15Y}}}
{{{C=24(11)+15(0)=264}}}
{{{C=24(0)+15(0)=0}}}
{{{C=24(0)+15(7)=105}}}