Question 827459
{{{(x^2+6x+9)/(x^2-9)=(x+3)^2/((x+3)(x-3))=(x+3)(x+3)/((x+3)(x-3))}}}
For {{{x<>-3}}} , {{{x+3<>0}}} and we can simplify:
{{{(x^2+6x+9)/(x^2-9)=(x+3)^2/((x+3)(x-3))=(x+3)(x+3)/((x+3)(x-3))=cross((x+3))(x+3)/(cross((x+3))(x-3))=(x+3)/(x-3)}}}
For {{{x=-3}}} the expression {{{(x^2+6x+9)/(x^2-9)}}} is undefined because {{{x^2-9=0}}} and we cannot divide by zero.
For {{{x=3}}} the original expression, and the simplified expression are undefined because {{{x^2-9=0}}} and {{{x-3=0}}} .